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Abstract. We consider the growth constants of several types of animals on d-dimensional 
hypercubic lattices. A combination of rigorous inequalities and I/d-expansions leads us to 
conjecture a strict ordering of these growth consLBnls These results are useful in the analysis 
of models of branched polymer behaviour. 

1. Introduction 

Recently there has been considerable interest in using lattice animals (connected subgraphs 
of the lattice) and lattice trees (animals with no cycles) to model the collapse transition of 
branched polymers in dilute solution (Madras et al 1990, Flesia and Gaunt 1992, Flesia et 
al 1992, Stella et al 1992, Vanderzande 1993). Several models have been used involving 
different types of lattice animals. Each of these types grows exponentially with size and the 
growth constants are related to the free energies of the models at particular temperatures. 
The relative values of the growth constants are important because they determine the broad 
features of the temperature dependence of the free energies. 

In this paper we shall be concerned with six types of lattice animal of which three are 
weakly embeddable (subgraphs of the lattice) and three are strongly embeddable (section 
graphs of the lattice) in a d-dimensional simple hypercubic lattice. Let a,, bo, tn be the 
number per lattice site of animals with n vertices, animals with n edges and trees with n 
vertices, weakly embeddable in the lattice, respectively. Similarly we use A,, B,, T ,  for the 
corresponding numbers of strongly embeddable objects. The smallest value of n for which 
these quantities axe all different is n = 4 and, for the square lattice, Q = 23, 64 = 88, 
t4 = 22, A4 = 19, B4 = 56 and T4 = 18. 

A concatenation argument establishes the existence of the limit 

(1.1) 

and this defines the growth constant (A$) of weakly embeddable animals with n vertices, 
i.e. a, = A,"+"("). Similarly, the other constants are defined by the expressions b, = A~+"("), 

In this paper we give l/d-expansions for each of these six growth constants which 

(1.2) 
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I lim n- loga, logAS 
"-tu2 

t - A;+O(") A - 1\n+O(fl)), B, = 1\i+O(") 
n -  , n -  s T, = 1\:+0("). 

strongly suggest the ordering 

A,? > Ab > A, > A,? > Ab > A. . 
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Some of these can easily be proved to be non-strict inequalities (A$ 2 ,Lo, Ah 3 Lo, A, 2 Ao, 
A,, 2 A,,, A,$ 2 Ay, Ab 2 Ah, A,, > Ao), by noticing that one set of animals is a subset of 
another set of animals. The strict inequalities are more difficult but Whittington and Soteros 
(1990) used pattern theorem arguments to show that 
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As > h, > As > A, 

Here we prove the additional strict inequalities As > hb > A,. 
Although these rigorous arguments establish that certain pairs of growth constants are 

different, they give no information about the magnitudes of these differences. These can 
be characterized by the power of l /d at which the expansions of the two growth constants 
first differ and may be estimated numerically, in arbitrary d, by truncation. 

2. Rigorous results 

In this section we make extensive use of the arguments of Soteros and Whittington (1988) 
and Madras et a1 (1988) to prove that h, > hb > Lo. 

The cyclomatic index is the maximum number of edges which can be removed without 
disconnecting the animal. Let a,@) be the number (per lattice site) of animals with n 
vertices, having cycIomatic index c. Similarly, let bn(c) be the number of animals with n 
edges and cyclomatic index c. Madras et al (1988) have shown that the limit exists in the 
following definition of @(or): 

(2.1 ) log@(.) = lim n-' ioga,(rornl) 
n+m 

and have investigated the properties of @(CY). 

Using Euler's relation we have 

h ( c )  = G - ~ + I ( C ) .  (2.2) 
This equation can be used to establish the existence of the limit in the definition of the 
function $(a), 

(2.3) 

This follows immediately from (2.1) and (2.2) and lemma 4.5 of Madras et a1 (1988) on 
setting c = rffnl, taking logarithms, dividing by n,  and letting n tend to infinity, giving 

log *(U) = l i  n-' log b,( ran]).  
n-m 

log@(LY) = (1 -.)log@ - 
(1  "1 

Next we prove that )ib > Lo. Clearly 

log~~>log*(LY)=(1-01) log~ - 
(1 :.I 

(2.4) 

for any 01 < l-l/d. To obtain a lower bound for the expression on the right-hand side of 
(2.5) we now make use of theorem 3 and (2.23) of Madras et al (1988). (In fact (2.23) of 
Madras et al (1988) relies on (2.21) of Sotems and Whittington (1988) being hue for any 
dimension d. A detailed proof of (2.21) for d = 2 and a sketch for higher dimensions was 
given in Soteros and Whittington (1988); more details of a proof for d > 2 are given in the 
appendix.) This leads to the following result. Given a sufficiently small positive constant 
6 ,  

logha 2 (1 - 01) logh, + E(1 - 201) log 
E(l - 201) - 01 
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for all positive ci less than a given constant depending on E .  This equation can be rewritten 
as 

The second term on the right-hand side is always positive and the third term is positive if 
E 

O < c i <  (2.8) 1 + 26 + 3A2 ’ 

Since it is always possible to choose a value of 01 to satisfy this condition we have 

hb > h, . (2.9) 

To show that A, > hb we use (2.4) which gives a relation between 9 and @. Clearly 
A$ = max, @(a) and Ab = max. @(a). Suppose that +(a) first reaches its maximum value 
for ci = cib. Either cib = 0 or cib > 0. In the first case we have Ab = p(0) = @(O) = A. 
which is impossible because of (2.9). Hence 

(2.10) 

Hence, we have proved that A,, > Ab > A,. 
If we define cis as the value of ci at which @(U) first attains its maximum value, it 

is possible to derive an inequality relating ci8 and cib. By an argument analogous to that 
leading to (2.10) we can show that log& < (1 + cis) loghb. Together with (2.10) this 
implies that (1 + cis)(l - cib) > 1 or, equivalently 

(2.11) 

3. lid expansions 

In this section, we present expansions for the growth constants in inverse powers of 
U = 2d - 1. The methods used are similar to those described by Gaunt et a1 (1976, 
1982), Gaunt and Ruskin (1978). Here we only give an outline of the argument for one of 
the cases. 

We consider the number a, of weakly embeddable animals counted by vertices. The 
first few terms can be written for general d as 

a 2 = (  ;) 
a3 = ( f ) + 4 ( ; ) 
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These can be summarized as 

+ . p n n - 7  I 6 ( n  - 3)(12n5 - 56n4 + 24n3 + 41n2 - 174n + 1320) 

+2"-7n"-91 6 ( n  - 4)(8n8 - 80n' + 220n6 - 1 14n5 - 336n4 + 3973n3 

- 12749n' + 67 226n - 245 280) ( ) 
....+( ;) 

for all values of n. Expanding the binomial coefficients in inverse power of U ,  taking 
logarithms, dividing by n and letting n + 00, we obtain 

(3.3) 
In a similar way we have derived the first few coefficients in the corresponding 

logh,(d) =logcF + 1 - % U - ' -  2 240 -' - . . I .  

l o g h = l o g u +  1 - - C c ; u - ~  (3.4) 

expansions for the other growth constants. Writing 

iZ1 
where h is a generic growth constant, we give the values of the coefficients c1, c?, c3 in 
table 1 for the six models. For hb, these agree with the results of Harris (1982) and for 
A,, A,, A,,, CI and c2 agree with the results of Gaunt et al (1976, 1982). The remaining 
coefficients are new. 

A comparison of the coefficients in table 1 suggests h, z hb > A, > A, > Ab > A. 
for sufficiently large d. 

Table 1. Coefficients in l/aexpansions of logA 

C, 

The results of the last section suggest that (1.2) is satisfie : sufficiently large. In 
addition, the results of section 2, coupled with those of Whittington and Soteros (1990), 
establish rigorously that A,? > hb > & > A> > A,. A pattern theorem argument similar 
to that of Whittington and Soteros can be used to show that Ab > Ab and Ab > Ao. This 
leaves open the inequality A, > Ab. To address this, we reproduce (in table 2) numerical 
estimates of A, and Ab, for d = 2 and 3, as given in Flesia and Gaunt (1992). These 
results are evidence for the strict inequality > Ab for the lowest dimensions. 
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Table 2. Series estimates of growth constants in low dimensions. 

d = 2  d = 3  

A, 4.063 i 0.002 8.34 i: 0.025 
Ab 3.877 i: 0.008 7.907 * 0.004 

Finally, it should be noted that the expansion defined by (3.4) is expected to be 
asymptotic rather than convergent (Kesten 1964, Fisher and Singh 1990, Hara and Slade 
1994). Estimates of the various growth constants may then be obtained by truncation after 
the smallest term, although that is difficult to ascertain when only the first three coefficients 
are available. These estimates satisfy the inequalities in (1.2) for d = 4,5,6, . . . . In 
almost all cases, the best estimate obtained by truncation is smaller than the result from 
exact enumeration and series analysis. The difference between the truncation estimate and 
the ‘exact’ result decreases as a! increases and is essentially zero (to within the numerical 
uncertainties of the ‘exact’ results) by about d = 4-6. 
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Appendix. 

In this appendix we show that (2.21) of Soteros and Whittington (1988) (sw), 

a.+&) 2 A r ) a d W C  C (A. 1 ) 

holds in any dimension d .  In sw, the inequality (A.1) was proved in detail for the square 
lattice and a sketch of a proof was given for higher dimensions. Here we give a revised 
and more detailed proof of (A.1) for d > 2 than that presented in sw. In particular, in 
the proof presented here the constants defined in (3.2) and (3.3) of sw will be independent 
of the dimension d .  Just as for the square lattice case, we prove (A.1) using a sequence 
of theorems and lemmas. First, the notation introduced in sw must be generalized to d 
dimensions. 

Let ( X I ,  X Z .  . . . , x d )  be an arbitrary vertex in the hypercubic lattice Zd. Given a tree T 
in Z d  with vertex set V,  edge set E ,  n vertices and at least one vertex with degree greater 
than 2, let 3 be the set of all vertices in T with degree greater than 2. Consider uo E 3 and 
let the coordinates of ~0 = (yl, yz.. . . , yd). IQ is contained in (:) sub-planes of Z d .  The 
( j ,  k)-plane with j c k is the plane ( ( X I , X ~ , .  . . . xd)lxj  = yi, i = 1 , .  . . , d ,  i # j ,  k}. These 
planes can be ordered lexicographically according to the values of j and k. UO’S degree is 
at least three and thus uo has at least one pair of right-angled edges incident on it. Take 
the ( jo,  b)-plane to be the first plane (in the lexicographic ordering of the planes) which 
contains at least one pair of right-angled edges incident on UO. In the (jo, ko)-plane, the 
positive xn,-direction is considered north and the positive xj,-direction is considered east. 
In this plane, uo and the edges connected to it are in exactly one of the nine configurations 



7348 D S Gaunt et al 

1 2 3 4 

T i  

7 8 9 

Figure Al. On the hypercubic lattice a vertex of d e g m  great- than 2 must be one of the nine 
types shown. 

shown in figure 1 with north and east defined as above. (Note that configurations 1,2,3,  5 
and 6 correspond to the configurations 1-5, respectively, of sw.) uo is said to be a member 
of the set V; if, looking in the (io, ko)-piane, it is in the ith configuration of figure 1. 

For any set So of vertices in Zd we define the top (bottom) vertex as follows. First 
construct the subset S1 c So such that the coordinate x1 of every vertex in SI has the 
maximum (minimum) value over all vertices in So. We then recursively construct S, c & - I  

such that the coordinate Xk of every vertex in Sk has the maximum (minimum) value over 
all vertices in 3k-l. Let j be the smallest integer such that Sj contains precisely one vertex, 
and call this vertex the top (bottom) vertex of SO. 

TheoremA.1. Every tree (with n vertices) containing a vertex uo E Vt, VZ, V3 or V, can 
be converted into a 1-animal (with n + 1 vertices) containing a 4-cycle in which uo is the 
bottom vertex of the 4-cycle. The resulting 1-animal can have at most three. trees rooted at 
a vertex in VI U V, U V3 U V4 as precursors. 

Proof Let U, be the top vertex of the tree, with coordinates (xi, x ;~  . . . , x;). In the following 
we assume for convenience that uo is such that j o  = 1 and ko = 2. (To obtain the required 
construction for other uo, rotate the tree so that 'east' is in the positive xl-direction and 
'north' is in the positive xz-direction, perform the construction and then rotate back.) 

Since uo E VI, Vz, V3 or V4 then ~0 is connected to V I  and u~ with coordinates 
011 + I, y z ,  . . . , y d )  and ( y l ,  yz + 1, y3,. . . , y d )  respectively. We consider four subcases 
according to whether 

(i) there is no vertex in the tree with coordinates ( y l  + 1, yz + 1, y3, , . . , y d ) ,  (in this case 

(ii) there is a vertex U) in the tree with coordinates ( y ~  + 1, yz + 1. y3 ,  . . . , y d )  and either 

(iii) u3 E V,  (ul  - u3) $ E, (R - y) $ E and, using the definition of k*  given below, 

(iv) u3 E V, (U] - u s )  $ E,  (UZ - us) $ E and where k*  5 and odd (then we say uo E W4). 

we say uo E WI), 

(U, - u3) E E or (u2 - U,) E E ,  (then we say uo E W2), 

either k' = 5 or k' is even (in this case we say ug E W3). or 
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Since T is a tree it is not possible for both ( V I  -u3) E E and ( V I - ~ 3 )  E E .  For cases (iii) and 
(iv), the tree must contain at least one of the U-2 vertices: u4 = (y1 +2, y z + l ,  y3, . . . , ya), 
VS = (SI f 1, YZ + 2, B.. , ., Yd), "6 = + 1, YZ + 1, Y3 + 1, Y 4 r . .  ., Yd), U7 = 
(Y1 + 1,SZ + 13Y3 - 1,Y4r...rYd)....r u2d (YI + 1,YZ + 1,Y3,...,Yd-liYd f I), = 
uzdi.1 = (y1+1,yz+1,~3, . . .  ,Yd-I,Yd-l). ~3isthenconnectedtouobyapathcontaining 
an edge, (u3 - U& through one and only one of the vertices uk, k = 4, . . . ,2d t 1; define 
k* E {4,5,6, . . . ,2d + 1) to be the subscript such that uk. E V is h i s  vertex. 

For the four cases we have four different constructions (the first two are exactly the 
same as in the d = 2 case): 
(i) add Y at (YI + 1, YZ t 1, y3, . . . , Yd) and the edges (UI - u3) and (UZ - y); 
(ii) if (UI -ug) E E ,  add ( L J - u ~ ) ,  and the vertex ut, with coordinates ( x i +  1, x i ,  x i ,  . . . , x i )  

and the edge ( U , - U , , ) .  If ( U Z - ~ 3 )  E E ,  add ( U I  -u3) ,  and the vertex up with coordinates 
( x i ,  x i  + 1, x i ,  . . . , x i )  and the edge (ut - u p ) ;  

(iii) delete the edge (u3 - u p )  and add the edges (UI - u3) and (UZ - vg). Then, if k' = 4 
add the vertex up = ( x i  + 1, x i .  . . . , x i )  and edge (uf - U,,). If k* = 5, add the vertex 
up = ( x t ,  x: + 1, x i ,  . . . , x;) and edge (ut - up).  Finally, if k* = Z j ,  j > 2, add the 
vertex U,, = ( x i ,  x i ,  xg, . . . , xj + 1,. . . , x i )  and edge (U, - w); 

(iv) delete the edge (u3 - u p )  and add the edges (ut - U,) and (UZ - us). Then add the 
vertex utt = ( x i ,  x i ,  x i ,  . . . , xj  + 1 , .  . . , x i )  and edge (ut - ut,) where j = (k' - 1)/2 
(note that j > 2). 

The connected graph resulting from each of these constructions has n + 1 vertices and n + 1 
edges so that it is a I-animal. Case (ii) I-animals can be distinguished from case (iv) 
1-animals by looking at the direction of the edge attached to the top vertex; hence these 
two cases can be combined. 

Let 7 be the set of trees such that T E 7 iff Vl(T) U V*(T) U V3(T) U V4(T) is not 
empty. Let TR be the set of rooted trees obtained by rooting each member (T) of 1 at each 
vertex uo E V,(T)  U Vz(T)  U V3(T) U V4(T). Let TR, C 7~ be such that the tree T E 1 R  is 
a member of 7~~ iff U&") E Wk(T). 

The transformation defined above maps a member of Tik uniquely into a 1-animal 
so that this transformation from 7Rk is 1-1 and onto the image set of 7 ~ ~ .  Furthermore, 
the transformation maps a member of 7R2 U 7, uniquely into a I-animal so that this 
transformation is 1-1 and onto the image set of 1~~ U I&. Hence, each 1-animal can have 
at most three precursors in the set of rooted trees. This completes the proof. U 

Let b,(e) be the number of trees with n vertices, more than En of which are members 
of VI U Vz U V3 U V4. If a tree has more than en vertices in VI U VZ U V3 U V4, c vertices 
can be chosen in at least c:) ways and hence, using an argument analogous to that in sw, 

an+&) 2 (En)b.(Q/3' C (A.2) 

for en > c .  

Lemma A.1. If & ( E ,  >) is the number of trees with n vertices containing more than en 
vertices of degree greater than 2 then 

The result corresponding to lemma 1 in sw is now as follows. 

bc(6/9) tn(e, >)/4. (-4.3) 
ProoJ Suppose that & ( E ,  >) is the set of trees with n vertices having more than en vertices 
of degree greater than 2. We construct subsets Snm(e, >) such that a tree T E &(e,  >) 
is a member of Snm(e, >) if the number of vertices in V,,,(T) is at least as large as the 
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number in Vi(T), i = 1 , .  . . , 9 ,  i # m and m is the smallest value for which this is true. 
Thus T can be a member of only one subset &,(e, >). Using the symmetry between Vz. 
V3. V5 and v6, ISnz(e, >)I 2 h(€, ?)I 2 I S n d E .  >)I 3 Isd~, >)I where we write I...I 
for the cardinality of a set. Using the symmehy between V4, V,, V8 and Vg, lSn4(e, >)I 2 
ISn7(~, >)I 2 IS,&, >)I 2 I ~ , Y ( c ,  >)I. Hence 

D S Gaunt et a1 

Any T E Snm(e, >) is also a member of & ( E ,  >) and hence has at least n6/9 vertices in 
V,,,(T). Therefore the number of trees having at least ne /9  vertices in VI U Vz U V3 U V4 is 

U 

The next two lemmas have already been proved for trees in Zd for arbitrary dimension 

bounded below by E;=, [Snt(<, >)I and this together with (A.4). implies (A.3). 

d. 

Lemma A.2 (Lipson and Whittington 1983). If tn(e, <) is the number of trees with n vertices 
containing at most en vertices of degree greater than 2 then there exists a positive constant 
A(<) such that the limit 

Iim n-' logt,(s, <) IogA(e) < 03 (A.5) n+m 

exists. 

LemaA.3  (Soteros and Whittingron 1988). h ( ~ )  is a log concave function of c on [O,lJ. 

The following lemma was proved in SW for d = 2 and the proof is easily modified to 
work for arbitrary dimension d .  

Lemma A.4. log h(6) is a continuous function o f t  in [0,1]. 

PruuJ The steps of the proof are exactIy the same as those described in sw except that 
now instead of their equations (2.8) and (2.9) we obtain 

f"(€, <) < Un(2dE) (A.6) 

since 

m = nl f n3 i n4 f ' .  . i nw = 2 -!- 2n3 i 3n4 f ' .  . + (2d - 1)nx < 2den (A.7) 

provided that 2/n < E < 1/(2d). Making appropriate changes in the remainder of the proof 
but following the same steps leads to the desired result. U 

Just as in sw these lemmas lead to the following results, 

Lemma AS. There exists €0 > 0 such that for all e c €0. 

l i i  ( t , (€ ,  >)/ae(0))  = 1. 
n-m 

L e m  A.6. There exists an A > 0 and an integer N such that for all n > N 

b n ( ~ )  2 Aan(O) (A.9) 

for any e < EQ/9. 

an integer N such that for any e < c0/9 (A.l) holds for all n > N. 
It then follows immediately from (A.2) and (A.9) that there exists EO > 0, A > 0 and 
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